skip to main content


Search for: All records

Creators/Authors contains: "Wang, Xinyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We derive a general expression for the absorptive part of the one-loop photon polarization tensor in a strongly magnetized quark-gluon plasma at nonzero baryon chemical potential. To demonstrate the application of the main result in the context of heavy-ion collisions, we study the effect of a nonzero baryon chemical potential on the photon emission rate. The rate and the ellipticity of photon emission are studied numerically as a function the transverse momentum (energy) for several values of temperature and chemical potential. When the chemical potential is small compared to the temperature, the rates of the quark and antiquark splitting processes (i.e.,$$q\rightarrow q +\gamma $$qq+γand$${\bar{q}}\rightarrow {\bar{q}} +\gamma $$q¯q¯+γ, respectively) are approximately the same. However, the quark splitting gradually becomes the dominant process with increasing the chemical potential. We also find that increasing the chemical potential leads to a growing total photon production rate but has only a small effect on the ellipticity of photon emission. The quark-antiquark annihilation ($$q+{\bar{q}}\rightarrow \gamma $$q+q¯γ) also contributes to the photon production, but its contribution remains relatively small for a wide range of temperatures and chemical potentials investigated.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Forecasting the El Niño-Southern Oscillation (ENSO) has been a subject of vigorous research due to the important role of the phenomenon in climate dynamics and its worldwide socioeconomic impacts. Over the past decades, numerous models for ENSO prediction have been developed, among which statistical models approximating ENSO evolution by linear dynamics have received significant attention owing to their simplicity and comparable forecast skill to first-principles models at short lead times. Yet, due to highly nonlinear and chaotic dynamics (particularly during ENSO initiation), such models have limited skill for longer-term forecasts beyond half a year. To resolve this limitation, here we employ a new nonparametric statistical approach based on analog forecasting, called kernel analog forecasting (KAF), which avoids assumptions on the underlying dynamics through the use of nonlinear kernel methods for machine learning and dimension reduction of high-dimensional datasets. Through a rigorous connection with Koopman operator theory for dynamical systems, KAF yields statistically optimal predictions of future ENSO states as conditional expectations, given noisy and potentially incomplete data at forecast initialization. Here, using industrial-era Indo-Pacific sea surface temperature (SST) as training data, the method is shown to successfully predict the Niño 3.4 index in a 1998–2017 verification period out to a 10-month lead, which corresponds to an increase of 3–8 months (depending on the decade) over a benchmark linear inverse model (LIM), while significantly improving upon the ENSO predictability “spring barrier”. In particular, KAF successfully predicts the historic 2015/16 El Niño at initialization times as early as June 2015, which is comparable to the skill of current dynamical models. An analysis of a 1300-yr control integration of a comprehensive climate model (CCSM4) further demonstrates that the enhanced predictability afforded by KAF holds over potentially much longer leads, extending to 24 months versus 18 months in the benchmark LIM. Probabilistic forecasts for the occurrence of El Niño/La Niña events are also performed and assessed via information-theoretic metrics, showing an improvement of skill over LIM approaches, thus opening an avenue for environmental risk assessment relevant in a variety of contexts.

     
    more » « less
  4. Interannual variability in the Southern Ocean is investigated via nonlinear Laplacian spectral analysis (NLSA), an objective eigendecomposition technique for nonlinear dynamical systems that can simultaneously recover multiple timescales from data with high skill. Applied to modelled and observed sea surface temperature and sea ice concentration data, NLSA recovers the wavenumber‐2 eastwards propagating signal corresponding to the Antarctic circumpolar wave (ACW). During certain phases of its lifecycle, the spatial patterns of this mode display a structure that can explain the statistical origin of the Antarctic dipole pattern. Another group of modes have combination frequencies consistent with the modulation of the annual cycle by the ACW. Further examination of these newly identified modes reveals that they can have either eastwards or westwards propagation, combined with meridional pulsation reminiscent of sea ice reemergence patterns. Moreover, they exhibit smaller‐scale spatial structures and explain more Indian Ocean variance than the primary ACW modes. We attribute these modes to teleconnections between ACW and the tropical Indo‐Pacific Ocean; in particular, fundamental El Niño–Southern Oscillation (ENSO) modes and their associated combination modes with the annual cycle recovered by NLSA. Another mode extracted from the Antarctic variables displays an eastwards propagating wavenumber‐3 structure over the Southern Ocean, but exhibits no significant correlation to interannual Indo‐Pacific variability.

     
    more » « less